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0. Introduction. A widely used discretizat ion method for modeling t hermal systems is the
thermal network approach. 1The network approach is derived {from the energy halance cquations and
is cquivalent toa particular finite diflerence discreti sation of t heunderlying heat transfer equatior .
The thermalnetwork is defined by a set of set of nodes and conductances, and is analogous 1,() an
clectrical network. Thus there is a correspondence bet ween potential, flow, resist ance, capacitance,
cte., between these networks, and basic laws such as Ohm’s | .aw and Kirchofl’s | .aws can then be
applied (o balancing the network [9].

Although there is the underlying connection with the heat t ransfer cquation defined over a
spatial domain, the app roach is also used t o develop models of cornplex syst ems for which anode
1ay represent a particularisothernial comiponent of the systein which does not necessarily conforn,
1,( I aregulardiscretizvation of the domain. This is a cornmonly encountered situation in spacccraft
thermal analysis problems. For example, an engineer may use a single node to model an clectronics
box or a cryogenically cooled component of a spacecraft. Irrespective of these consider ations, the
domain is divided into a number of elentents, or subvolumes, and a node is typically placed at the
center (if the element. ‘The temperature of t henode is the average te miperature over the subvolume.
Inaddition to temperature, anode also has a capacitance which represents the thernal imass of the
node that dictates how guickly the node can chang e ter nper ature. The capacitance is computed
from the proper tics of the material comprising t he subvohane at t ached to the node, and arises in
the analysis of the transient characteristics of” the system,  Our interest here is primarily in the
st eady state problemn so the nodes we consider will have essentially a zero t ime constant (these are
somctimes referred to as arithmetic nodes).

'The conductors describe the energy transport bel ween nodes. 'They have the form of cither a
conduction conductor, a convection conductor, or a radiation co nductor. The underlying physical
mechanisims for cach of these modes of energy transfer is diflferent. Within the context of the result-
ing mathanatical model, conduction and conveet ion coniduct ors transfer encrgy as the diflerence
between the tempaer atures between conmected nodes, while t he radiat o1 conductors are nonlincar
and involve the diflerernice in the fourth power of {he nodal temmperatures. Conductors normally
have the same value inboth directions between nodes; however, one way nodes are often u sed to
maodelfluid flow.

T'he resulting transient equations have the form
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11(0°¢: 1ydenotesthetemperatureat 1102¢ 7, Ciis the heat capacitance of 110(1(: 2, Cijare the con-
duction coel licienits, 18ij are the 1 adiation co eflicients, and the (; are heat. soil? ces. Ihe associated
st cady state equation we study inthisnote is

N N
Qi D (M- T Y R 0 i 1N (022)
gl g1

 I'he conduction cocflicients are commputed as a function of the thermal conduct ivity of the
material, the cross scctional arca through which the heal flows, and the leng th between nodes.
For a rectangular discretivation Fourier’s 1 .aw yiclds
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whet ¢ E denotes the thermal conductivity of the mat (GI'is], Ais t J1(! crossscctional al ca,and ], is
theleng th between nodes 7 and 7. For convection con(liiclors,
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where v is the thermal convective conduct ance and A is the nodal surface arca in contact with
the fluid. The ther mal conductivity is in general temperature dependent, so that the ' matrix
above is also. 'I'he radiation inter change matrix 12 is a function of’ the the surface geonetrics, the
orientation of the elemients of the systern with respect to one anot her (view act ors), their radiat ive
propertics, and temperature. ‘Lypically, Gy Cyy, and 1 IR, although when modecling, fluid
flow, the use of one way nodes causes asymmet ry in the mat rix C. When t ¢ mperatures are not
expected to deviate greatly from a nominal value, the assumption that the cocflicients of ¢ and R
arc temperat ure independent, i.e. constant, is often made. At cryogenic temperatures, where small
variations in temperature ca nlead to significant changes in the thermal conducetivity Of materials
this is not a valid assumption.

There exist anumber of commern cial codes that have ¢ njoyed consider able success solving the
steady state network p roblem (0.2). Solution techniques often yelv 011 exploiting specific st ructun e
of the networ k. Nonlinear Jacobi or Gauss Seidel iterat jon schemes which ciiploy an analylic
solution of individualthe scalar quartic equationsin (().2) are used, aswell as variations of New ton

Raphsonmicthods that, take advantage of the sparsity inherent in most network problems, and
various other successive subst itation met hods used in conjunction wit h acceleration t echimiques |5,
9,13, 20].

Although (0.2) is a very cor nmonly occuring problem, there doces not app car any general proof
of the existence of positive solutions, even for the constant cocllicient problem. For mildly nor -
Iincar problemns where the coe flicient. matrix /2 has st nall norm, the Newt on Kant oravich theorem
produces a solution under appropriat ¢ hypotheses. However, inmany spacecraftmodels this con
dition canmot be assumed, as radiation is often the dominant mode of heatiransfer. And although
(0.2?) has arclatively rich structure, it does not fit into the several classes of nonlinear equations {foy
which general convergence results are available, ¢ g A functions, (11 diagonally dominant functions
[“14,15]

In this paper a homotopy approach is [ivst used to prove existence and uniqueness of positive
solutions to (().2) in the constant cocllicient case with a mild restriction on the conduction and
radiation cocllicients and heat loads. This result enables the construction of a globally convergen o
algorithm. It also suggests other globally convergent schemes, and explains the relative success
of mayy algorithms for solving these thermal network problems under similar conditions.  We
also show that the hypotheses of this problem are easily generalized 1o include solut ions to othia
discretized boundary value problems. The constant coeflicient solution is then used to initialize
a sccond homotopy for proving existence of positive solutions to (().2) for temperature dependent,
cocflicients undey mild growth restrictions. We note that highly nonlinear problems that ocem in
chemical p orocesses may not cven possess solutions [20].

Homotopy methods have been previously employed for solving a number of other engineering,
problems. T'ypically they perforin somewhal slower than other methods, but for diflicult problems
they ofler a robust solution approach [1,2, 1 LT A small sample problem compares the perfor-
mance of the Newton method with stepsize control, the nonlinear Gauss Scidel iteration, and  a
contination micthod.

1. Preliminaries. The steady state cquation of heat transfer we study in this note has the




form
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lHere </~ denotes the temperature at node 77, Cy;are the conduction coceflicients, 173 are the radiation
cocflicienits, and the Q; are heat sources. Initially we will assumethat t n¢ conductionand radiation
cocflicients arce independent of temperatuie,

We begin the analysis by introducing the N X N matrices C and 1R defined
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With these notations the system of scalar equations (1.1) can be written as
Cr L RDCT) Qo0 (.3)

Next weassume without loss of generality that ¢ 12, Q) and ‘1’ have heen partitioned to have

the form
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where 75 denotes the fixed and known boundary nodes. Using these values, the equation for the
unknown nodes bee omes

¥
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Ilere D has been partitioned as diag(/) Dy).
1 nthe sequel we shall write ¢ Ciy, R Ry, D Dy, 17, and Q Q| Cholly |
Ry, (1), and study the equation

()= (0 Iy Cay RD(x) | Q with dim(x) 77. (1.6)

The entries Of € shall be denoted ¢;; and the entries of the matrix 12 will be denoted 7ij- Note that
by construction both C and 11’ are diagonally dominant matrices, although not necessarily strictly
diagonally dominant. (A matrix A (a;;) is diagonally dominant if >,:_i/7' lai < |a;i]. Strict
diagonal dom in ance holds when strict inequality holds for all 7.) Animportant characteristic of
thenetwork equation thiat will be exploitedin 1 he sequel is the assumption t hat the matrix C - 1R
is “reducible.

Ann x nmatrix A :(eq4) is irreducibleif its directed graph G(A) is strongly connect cd, that
is, for any paiv of indices 7, § there is a sequence of nonzero entres of the form (tivythhg, Caty . o .. Uyji)
[3]. "This condition has a simple physical interpretation {for the sum of the conduction and radiation
imterchange matrices C 1 117 Given a pair of nodes 7, 7, there is a scquence of nodes v, s, ..., u
comecling 7 and j such that the interchange factors between each successive pair is nonzero.
‘1°1111s cach 1101 cantransferencrgyto ally 0111( '1” )0 throughascquence of 110(1(°s connected
by a combination of conductors or radiators. Under these 1 casonable physical assumiptions, the




hypothesis C' 1 R is irreducible is satisficd. Farthermore, if at least one node is connected to a
boundary node with nonzero interchange factor, then €| R has strict diagonal dominance in the
row corresponding to this node. In this case C | R is an arreducibly  dominant matrix [16]. An
irreducibly dominant matrix is invertible 1 6].

2. M ain Results. The existence results established in this section u s asimple continuation
idea. Before this idea can be applicd however, we first need to show that t he function I is coercive
for fixed Q, i.e., the energy balance cquation cannot be sat isfied by arbitrarvily large t e mperature
valuces.

Lemma 2.1, let C and 1@ be diagonally dominant synimetric noncegative definite matrices
with ¢'-| It irreducibly dominant. Then limp,. o [Ca ) RD(2)] - oo

Proof. st supposce that 12 is invertible. Let

an| - 00 and define vy - an/[tN]eo. Then

Can -l RD(@EN)|oo = N f\

v
=N Ry e
.’I,'Nl‘

Now,
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and there exists p > () such that [y | > p {orall N since IR is invertible. 1 lence, [Cay |
RD (xn )I - 00,

So now assume that R is not invertible. (We may assumie that 1! is nonzero, since if it were
this would require (7 to be invertible, and hence coere ive) Inthis case we may write, after a
permutation of coordinates, 12 as a block diagonal matrix

R diag(Ry ., Ty Onyosan )

where 12 is an n; X n; irreducible matrix for cach @ and O,,, »,,, is the 1y X 213 zero matrix. For
g 1 ogkleted o (1 1)7 ¢ R and let 157 denote the subspace generated by ¢, Note that if R;
is not invertible, then N(12;) + 149, since j¢7 = 0 and 12; becomes invertible by adding a vank one
perturbation corresponding 10 a positive (negative) entry on the diagonal (hence dinm(N(R;)) < 1.
Let S N(IR). Then S C @I,

Supposce there is a sequence ay with |2n| - > 0o such that |Ca:y -l RD(xn)| rermains bounded.
Let 11 denote the orthogonal projection onto S, and let vy = ay /|ay]|. Then

I]l)])('UN)|? ? 0711171](] ) ]I)])(Y’N)lrz?
where 04,4, denotes the smallest nonzero cigenivalue of 1. Now
|1 - D) 1= ND(n)?,

g0 that

|RD(oN)| > 00in/T- D (on)]?
Let py - [ND(wn)|? Since |an|*RD(vy) and |an[|Con| are of the samie magnitude, it follows
that py - > 0. And hence, D(vy) - > 5. Bul sinee S ¢ @F7, we have also that vy - > S,
Now let s € 5. Since I s symmetric,

<R ID(xn), s > O




However, since C - I¥is invertible, N(C)n S 0. Henee, R(C) NS - 0 and conscequently

lnllin | < Cu,s > | >m >0,
vl 1

[orsomcem. *1'1111s,

lim | <Cay,s>|- lim |ay | <Con,s>] o0
N- oo

N-o0

and hence, [#D(an ) | Can ) 0. ///

The method of proof is based on the following simg le homotopy idea: Tet @ denote an initial
estimate of the solution, and define Qg by

Qo - Cag RD(xq).
For A ¢ [(), 1] consider the function
H(a, A) - Ca A RD(a) 1 QoI AM(Q - Q). (2.1)

Note that 17 (ag, ()) - (), and the original problem is to solve /7 (2,1) 0. Showing that solutions
t o/l () can be continued from A (0 toA  Tinvolves properties of the di flerential of 1[. For
this wc note that

(@) oy Cho) RD, by where D, (B) [4275 hy oy dad g, |7 (2.2)

I lence, the di flerential 1), is the diagonal mat rix with i*” cntry /1.'1:‘;‘. ‘1'11(! theorembelow Snows

that this cur ve canalways be continuced.

Theorem 2.2, Suppose that ¢ and £ a1 ¢ symnetr ic nonpositive matrices with ¢ R
irreducibly dominant. '1'hen if Q is nonzero with @@ > (), ( 1.6) has aunique solutiona® with

at >0,

| roof.” Letag pll 1] with p > () and observe that Qg Clayg - RD(¢)> (). Q. Qo> 0
implies that Qo -1 A(Q - Q1) > () forall A [0, 1] by convexity. Note that by (1 .2) and (1 .4) both
(! and I? are diagonally dominant matrices with negat ive values on t he diagonal. Note also that so
long, as @ > (0, &1 /0x is invertible, since the matrix [ 12D, |7 is easily shown to be irreducibly
dominant. By the iimplicit function theorem we canlocally soil’c (2.1) in a neighborhood of A > ()
to p roduce a smooth solution curve. This curve can be cont ined so long as 911 /O rammains
invertible, And this happens as long as o > ().

'T'o show that solutions stay bounded away fromzero,supposc there exist values of A < “1 such
that some component of the solution a(X) is zero. Let A denote the infiimuane of all such A, By
continuity #(A*) > (), i.e. 2(A*) has no negative components. We will show that this is impossible.
Supposc one or more components of a:(A*) is zero. It is clear that 2 is not identically zer o since
Q) 1A (Q - Q) 7 O. Assumcthata; O butwy > (). Since C'1 R is irreducible, there exists a
sequence {¢4, | 5505 Civ 37, gy, o ¢ k1750 b, witheach entry nonzer o, 1t is easy to deduce that
a3 () hmpliesa;, 0, whichinturnimpliesa;;, O, ete.Henee, 2 0, which is a contradiction,
and solutions of (2.1 ) withxg > () must remain posit ive.

Now wec canassert that the Set

S{(x, )¢ (01) x I H(z A O}
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is a onc dimensionalmanifold. The connected comiponents of S arc cither diflcomor phic t 0 a circle
orthe real line. 'The solution curve 2:(X) must be diflcomorphic to the real line since 811 /0a - 17(2:)
remains invertible, and thereby unique solutions for (2. 1) exist in every neighborhood. 'The only

way 2:(A) could not be continued to A 1 is il for some X, limyo,x|a(A)]  cm. BylLemma 2.1,
|Cat RD(2)] -, oo as |x] -, c-o0. This then implies that solutions to (2.1 ) cease to exist in an
entire neighborhood of A since Q and Qg are finite. Thus #:(X) can be continued.

'To show uniquencess, suppose that « and y are two positive solutions. Then

0o I'(y) - I"()
Cly - ) 1 RID(y) - D)

But.,
(-’"f ! ?/f Y by )y an)
D(y) - D(x)
G20 2 (@ 1 v (e w0)
D, (y- ),
where \ )
(@31 ) (e 1 )
Z:
(‘T'(lzl g :(/721)("':71 f :I/H)
Thus

Cly ) | RD, (y - =) 0.
But C | 1RD, is invertible for z > (). Thusy 2.///

'The proof of Theoren 2.2 relied on properties of the matrices C, 1, and D(x) 1o establish the
invertibility of ', the coercivity of I''; and the positivity of solutions along the homotopy path.
These intermediate results form the crux of the proof of the theorem. If instead we assume these
propertics, then the argument of the theorem is transparent. With this idea in mind, consider the
cquation

Ca-t ()1 Q- 0, with @>0, Q0. (2.10)
Suppose ¢ is continuously differentiable and the following four conditions hold:

(i) There exists 29 > 0 and Qg > 0 with Qg / 0 such that Cxg -1 ¢(20) 1 Qo - 0,

(i1) ¢ ¢'(2) is invertible for all a2 > 0,

(1)

(iv) If 2 solves

Ca | ¢p(2)] - » 00 as || - > o0,

Ca ¢(z)1 Q- 0, with Q" >0, /0,

then bt > 0.

The method of proof in Theorem 2.2 shows that (2.10) has a positive solution.

Example 2.3, As an example of how this set of hypotheses arises inanother setting, consides
the disar elization of the two point boundary valie problem:

o’ () gla,u,d), a<ax<b, 211 ()

w(a) o, u(d) f. (2.110)



Here it is assumed that g is continuously diflerentiable on
Q- Az, uyu’y s a2 labl,u > 0,4 € RY,

with gy > 0, |gu| < M < 100, g(2,0,0) <0, and «,8 > 0. Define the uniform grid {77}; (],V
where A
X ay w1 oap-lhy jo 001, N with B (b- a)/(N -+ 1)

"The finite diflerence approximation to (2.11) has the form
Cul ¢p(u /)-1 Q 0, (2.12)

where Cis the N x N tridiagonal matrix C - {ri(1,- 2,1) (indicating -2’s on the diagonal, and
1’s on the upper and lower diagonals), and ¢ (¢h;), ¢ 1,..., N, with

‘ Uu; Uy e
gi(u) = - WPgla, g, - ST, (2.13)
2h :
and Q¢ RN, Q- o,0,---,f).
We will now outline how (i) (iv) are satisflied for this model for sufliciently small li. (Specifi-
cally, . < 2/M). First introduce ¢ = (),

pi(u) i(u) | Wig(ai, 0,0), i 1, .., N, (2.11)

and note  (ha  Cul ¢(u) 1@« o and Cu 1 9h(u) | Q 0 ave equivalent with Q defined a's
QQlg(1,0,0), . glan, 0, 01 Since g(z;, 0, 0) < () it follows that Q> (). Next note by the
mean value theorem that

Ui - Uy

Pi(u) - D gu (e, &(u))ui | gur (i, &i(u))- o 0, (2.15)

. . . u; - Uy, 1 .
where & (u) is on the line segment conmecting (0,0) and (ug, =57 +). Thus we can write 9 (u) -

W (u)u where W is the tridiagonal matyix
1

-1
W(u): - 11,21,7'7,(»7_(/“/(377-,_{7-(1/)),‘(/“(.7:1,{i('ll)), o

5] Gu (27, & (1)). (2.15)

lor Ik < 2/M, (i) follows by defining ug-[1-+. 1 7, since €' - W(uy) is diagonally dominant, with
strict dominance inat least, oncrow (¢ .g., the first).
To show (i), it is easily verified that vy’ W(w) with §; definedin (2.15) as

Uit - Uio 3
Eiu) - (uy, MY

Thus C | 1) is irreducibly dominant; therelore €' -] ¢ is invertible for all « > 0.
We usce the representation ip(u) - ¥ (u)u to prove the coercivity condition (iii). Note in general
(for h < 2/M) that C-| ¥ is tridiagonal,
D W) il - - 20 Blgu, 10 p),

with gy, > 0 and 0 < |p;| < < 1. Liet 04,00 (p) denote the minhmum singular value of the matrix
above where p = [py, ..., py]. Continuity of 04,4, (+) together with the compactness of {p: [p] < pu}

8




shows that the minimum of 0,,,4,(p) is achicved. This minimum cannot be zero since C - W(u) is
irreducibly dominant; hence invertible for all @ > 0. Thus it follows that |Cu -| W(u)u] - > oo as
] - > o0

To prove (iv) the representation (u) - W (uw)u once again. Suppose some component u; = 0

and

Cu- V(uw)u ] Q- 0, with Q" >0, Q"/0.

The i equation from the systemn above has the form
(1- pi)uioq- (21 h?‘(/“)u,- 1 (14 pi)uigr 1 QF 0.

Since |pi] < 1 and wi- 1,141 > 0, it follows that if w; - 0, then wi w1, Q7 - 0. Trom this it
follows that w - 0 and @Q* - 0, a contradiction. Thercefore v > 0, proving (iv). IFinally, it is also
a straightforward matter to prove uniqueness of solutions. To see this, suppose v and w are two
solutions, then we have

Clu- w)-| ¢u)- ¢p(w) - 0.

Again using the mean value theorem, we can write

o(u) - plw) - Glu- w),

where @ is a tridiagonal matrix of the form

$-o- }"2{‘7'7.'(};]1‘.(/11’ (-"51' ) ‘s(i)v .(/u(-":ia ‘57’)) ;:)/-[] G (f’:i;{.i))v

with & lying on the segment connecting (ug, (viyy - wi-1)/20) and (w;, (wiq1 - w1)/2h). Thus
Cu- w) | P(uw- w): 0. But again, C' -1 & is irreducibly diagonally dominant, hence v - .

We now relurn to equation (1.6) with temperature dependent conductances. A slight, change
in notation is made here as we write a;, for fixed boundary nodes, and 2 for the non boundary
nodes. We write (1.5) in the form

Cyy(a)a -t Ry Dy(2) - Cyo(a) () 1 19D0(a) -1 Q- 0. (2.16)

Theorem 2.4. Let Cyy and Cyy be C? functions and suppose Q-1 Cro(a)(a) 1 1190)5(a) > 0
for all 2 > 0, with at least one positive component. Suppose further that for cach a, Cyy ()| R is
irreducibly dominant. Then if sup, |C(2)] < oo and inf, 0,,,:,,(C(a) -1 12) > 0, (2.16) has a solution
with & > (.

Proof. I¥i1x 29 > 0 and consider the eguation

(j]] (ﬂf()).’lf - ]l),]]])](.'lf) g (/']2(.’17())(.’1511) | ]l)];),])z(.’li},) | (J 0. (?]7)

By Theoremn 2.2 equation (2.17) has a unique solution for any ¢ with Q-1 Cyp(ag) (@)1 9010, () >
0 where at least one component. is positivel. Now consider the homotopy 1/ (X, a)

HOx) - (- NC(a0) 1 ACy (@)]a: -t 11 D) 1 [(1 - A)Chra(mo) -+ ACa(a)]a | RyoD (@) | Q.

(2.18)
A value y in the range space of 11 is called regular if the Jacobian of I has full rank at /171 (y).
Saard’s theorem [10] guarantees that ahmost every value (in the sense of Lebesgue measure) is

9



regular. Thus we can find a scquence {Qn} such that Qn - > Q, @y > Q, and Q- Qp is a regnlar
value of 11 for cach N.
Now define 1y with domain (0,1) x RN by

Hy (g 2) - [0 MCH (o)t ACH (@)]a 1 Ryy D(a) -1 [(T- N Cho(ap) -1 ACyo(a)ay ) RyoD{a,) | Qn.

Zerois a regular value {or /]y, and in particular ]I]'V] (0) is a onc dimensional manifold. 1 lence, cach
component of ”fvl (O) is diflecomorphic cither to a circle or an open int erval [1 0], The component,
whosc closure contains ((), 2¢) is not diffecomorphic to a circle since

(()I]N ((), (l:)
O
is invertible, and by the fimplicit function theorem, solutions to 1y (A, ) () arcuniqueina
nei ghborhood of (0, 2:p) for | A| sufliciently small. Also note that for cach A,

[(] - )\)(1‘]2(.’17()) - )\(/V]Q(ﬂi)]flib-| ]{]g])(.’l?b) | CJN : (] - )\)[(}]Q(.’l?(;).’ltb f ]l),]g])(.’lfb) | (w)N]
)\[(/1]‘}(."7):’:[; | /1’,112])((1:1,) g (JN]

Both terms on the right above are nonnegative since Qn > @, thus
I(J . A)(j]g(.’l.‘()) | )\(}V]Q(ﬂi)l.’l,‘b | ]f] 2])(.’!51,) | (JN ? (],

with at least one positive component. Arguing as in the proof of Theorem 2.2, the component. O f
Hn (A 2) 0 ¢ (0,1) x I with limit point (0, ) is contained in (0,1) x R Tarthenmore, sinee
"Theorem 2.2 shows that the solution to //(0,2:) 0 is unique, and that

[(1- X)Chy () | ACH (@)@ ) 1y, D(x)

is cocrcive for cach A (Lhis is proved in the same manner as in Lemma 2.1.), standard arguments
[4,18] show that this component has a limit point {1} x ax. By continuity, /Ixy(1,25) - 0. And
since it is evident that the sequence of solutions {a:x } is bounded (from the coercivily assumption),
it contains at least one it point, i.c. there exists a subsequence oy, with 2, - » 2%, "Then writing,

2%y 12"y - Hy, (1,a*)y 4 Hy, (0, 2%) - Hy, (Lan,) 1 Hn(1,28,)
Q' QNk - ]]Nk(],.’li*)' IINA('ly-""Nk),

it follows that 77(1,2%) - 0since Qn, - > Q and an, - > 2%, And clearly % > 0 since 2y > 0 for
cevery N. ///

3. Solution methods. lor the systems defined in (1.5) and (2.11) (corresponding to Theorem
2.2 and Example 2.3), the homotopy method of proof suggests curve following algorithms as a
numerical means for finding solutions. It was shown in Theorem 2.2 that there is a unique ¢!
carve o0 0, 1] - R with 1 (2(A\),A) = 0 for all A by choosing a(0) -+ p[1--- 17 with p > 0. Tor
the homotopy defined in (2.1) this leads to the differential equation

(N 1 (x) Q- Qo) (3.1
wherewe recall 1V 1)) (2.2) as
Iy C RDyy Dy - diag(a, . Aa3), (3.2)

10



"The sol ution to I7(2) () is then the solutionto (3.1) at A 1. A similar diflerent ial equation can
be developed for the discretized boundary value problem in loxample 2.3,

T'he corresponding diflerentials remain invertible along the solut ion paths so that there arce
no turning points, and the paths can be parameterized by A, 1711115 theode of (3.1) canbesolved
or various other path following algorithms can be implemented [2,12,1 “1]. (Wenotet hat these
references also contain more general path following algorithms that deal with tuwrning points and
bifur cations.) Any of thesemethods givestise to a globally convergent algorithm for t he problems
(1 .6)and (2.12).

A pathfollowing technique of 1 )cuflhard [6] uses information along the path to generate bounds
for which Newton’s methoed is guaranteed to converge. A similar strategy can be emiployed here for
solving (1.6) by moving along {he curve 11(A, 2(A) 0, whilst conforming to the a priori estimates
required 1)y the Newton  Kantorovich (11(101°(:2 1.

Thesceond derivative of 17 will be of interestindeveloping thisidea since it figures prominently
in the analysis of Newton’s method. Wc have, noting that /" is a bilincar mapping,

.’73?}[.] V(']
[I7"(a)h] (k) 12)2 & . (3.3)
:l:;z‘ ik,
For complet eness we state the Newton Kantoravich theorem (sce for example [3]).

Newton- Kantorovich Thicorem. let g be aninitialestimate of the solutionto (1.2) and
assun e that 17 (a¢) is aninvertible matrix. 1 .t /# and 9 denote (we constants such that

117" (o) < By 11 (o) (2 ()] <, (3.1)
and supposc there exists r, i<, > 0 with
[17(2)] < K, Aor all 2 with |2~ 2| <1 (3.5)

Then if the constant h = 81K, satisfies

I <1/2 and 7[1- VI 20y <7, (3.6)
I3

the Newton ileration
a1 o owy - 1) T (a))

converges Lo a solution of I'(x) 0. Iw tharmuore t his solut jon is unique in any closed ballcentered
al xg with radius less than r, and the convergence is quadr alit.///

Note that since I - » 1 /1|1 - v/121] is increasing on the interval [(), 1 /2], we may take 25 <7
for the second condition in (3.6).
Now supposc (a*,A*) solves 11 (77, A*) O forsome A*C (O, 1), ie.

Ca* | RD@E)1Q 1N (Q Qo) 0. (3.7)
The next iterate is generated by solving
Cz | RD() 1 Q"1 1(Q Q) 0, (3.8)

11



where Q- Qi A(Q - qp, and © >0 is CI1OSCI1 as t 11(' maximumscalar for which the hypotheses
of the Newton Kantoravich theoremn can be verified. ni gener al at the k7 step the current solution
is used toinitialize a Newtoniterationt o solve

Cat RD(2) 1 Q) 0, where Qp Qr. 1 x(Q Qi , ). (3.9)

W (: note that the sequence {Q } generated in this manner lies on thesegment connecting, Qo to
Q. 1 lence, if aniteration admitting the value 1,, 1 is oblained, the solution has been found. We
will snow below how to generate {1y }, and p1ove that the iteration (3. 9) terminates after a finite
number of steps.

To determine the value of ¢ in (3.8) above define

a (@) Q Q) (3710)

and note that

g 1@ 0 |Cat R DE)Y QT e @

3.1
Lax, (
since
Ca* |\ D ) 1Q° o
Next, using the definition of I we have for |o - 2| <7,
sup | 1" (2) oo < 12|1 |00 max |27 17]2. (3.12)
Thus the hypotheses (3.4) (3.6) are satisfied so long as
L<- 1< (3.13)
T2 T 2aK,f3 '

To maximize the value of 1 above, let fy @) 7/2a, and fo(r) 1 /2, 3, with K, given in
(3.5). Define f(r) = min(fi(r), fo(r)) and observe that for any 77, if 1 < f(r), (3.6) is satisfied.
Thus we maximize f(r). Now fj is an increasing function of 7 and f2 is a decreasing function of
7 on |0,00). Furthermore, since f1(0)  0,and f2(0) > 0, it follows that f is maximized when
i J2-Phis oceurs at the sinallest positive real solution to {he cubic equat ion

. . . 1
3 % 2 *9
- 22l alfr - - e (), 3,14
Lo — 12| R o0 f3 ( )

whicre 2} denotes the maximmm component of . It is rosily verified that the cubic above has a
single real solution, and this solution is positive. Once this solution is found, we sett 1 /2c.

Along the solution curve S, 2;(X) and 3 arc both contimous. Because S is a compacl gef,
@; and f are both bounded with min(a}) > 0 and max(8) < cm. Thus the smallest positive real
solution to this cubic over all points along the curve is bounded away {rom zero. Now as Q%> ¢,
it follows from (3.10) that o -» O since 3 is uniformly bounded on S, Henee, for Q7 sufficiently
closc to @, say |@ - @] < 6, we havet > 1. 'To show that the fteration defined in (3.9) converges
it suflices to show that after a {inite number of steps an iterate will get. within a 6 neighborhood
of (). 'To sce this, consider the di flerence scheme

Qr Qr 1 11 (Q- Q)
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andsupposc |Q) - Qr| > 6for all k. Then necessarily £y - > 0) which is impossible since {{} is
bounded away fron, zero. 1 lence forsufliciently largen, we get |, Q < 6, and so the algorithmn
{erminates after a finite number of steps.

Of course 11101°¢ eflicient nmiethods for path following can be developed for this problem since
the curve is unique, there are no {urning points, and as we are only interested in the valae (1),
it is not necessary 1o follow the curve exactly. Stepsize adjustment schemes based on how quickly
the Newton corrector stage converges can be inmplemented, as well as the use of an Fuler or other
predictor steps since the diflerential at the carrentiterate is available |1 ,2,1 2].

IFor the discretized boundary value problem in Bxample 2.3, More [“14] used a gencralization
of diagonal dominance to nonlincar functions to prove that the nonlincar Gauss Scidel and Jacobi
iiterations arce globally ¢ onvergent.  Similar resulls were oblained car lier by Rheinboldt using an
extension of M matrices to nonlincar functions | 1 5. However, this particular extension required
the domain of gin (2.1 1) to be defined on the entire real line, instead of the nonnmegative axis, and
convergence to a nonnegative solution was 110t established. 1lomotopy methods have been used
previously for the discretized problemand also in conjunction with shooting methods for numerical
solution of the boundary value problem|1 ,6,12,18,1 9].

‘I'he presenee of the quartic term prohibits direct application of the methods in [14,°15] (o
establish global convergence of these algorithms for (1 .6), although the nonlincar Gauss Scidel and
Jacobi iterations are conmonly used and PErform ywell in practice. 1t is infact straight forward t o
demonstrate that these iterations are at least locally convergent for (1 .6).

To show this convergence {or the nonlinear Jacobi iteration we define the function (¢ as the
diagonal of the mapping I/

e -l 7']].7:’]1
G(x) -

g . A4
Cpp iy | 7 7171:"7,

Writing; I'(a:) = 1 (x) - G(2), where 11(x) I'(@)1G(a)we SOIN'(! for the fixed point of the
function ¢,

o) - G (2)), (3.11)

which is equivalent to finding G(a) - 1 (2) and henee, I'(2:) - 0. Assuming ¢’ is continuous, a
suflicient condition for the convergence of the fixed point iteration in a neighborhood of the solution
a* is that p(¢'(2*)) < 1, where p denotes the spectral radins. From (3.14) we obtain

¢ (G0N () H (). (3.15)
And by the inverse function t heorem and the definition of 11,

OGN (e
‘ y ]( ), (3.16)
11 G
Noting that
) - diag(C 1 RD,),

using the diagonal dominance of 17 and irreducibility we will show that p(J | G 11y < 1 holds
everywhere, so that the nonlincar Jacobi iteration, G(a™11) = 11 (a™), is locally convergent. To sce
this, {irst observe that G T irreducibly dominant with negative ones on the diagonal. 1lence,
cvery cigenvalue of G- 11T has negative real part, and because of the irreducible dominance,
(G TITY < |G T T | o < 2. Thus, p(1 1 G 71Ty < 1, verifying local convergence. Local
convergence for the Gauss Scidel iterations follow since the associated spectral radius for the
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Gauss Scidel update is strictly less than for the Jacobi iteration whenever the Jacobi iteration is
converg ent ([3]).

Another class of globally convergent algorithins for (1.6) and (2.12) follow from the observation
that the nonlincar least squar s probl em,

2
’

min J(r) | ()

has a unique stationary point for 22 > 0 corresponding to I'(x) 0 since it has already beer)
established in Theorem 2.2 and lixample 2.3 that 7'(2) 0 has a unique solution for 2 > 0 and
also that ' is invertible for 22 > 0. Thus the class of bound constraint algorithms represent an
alt ernative to the solution methods already discussed. For exatple, trust region incl11(A cnjoy,
1111( ler mildassumptions, global convergence toa Kuhn "Tucker point of the inequality constrained
problem above [8]. Infact if Cin(1.6) is invertible, we can show that t he solution I'(2) 0 s
the unigue K uhm Tucker point, thus making t he trust region algorith globally convergent to the
solution JI7(x) o. 'T'his is casily demonistrated: The Kuhn Tucker conditions for this problem are

(@) X o,
A > ()
Xa; O, for all 4

where A denotes the 1 agrange multiplier corresponding to the inequality constraint 22 > 0. Since

17" s invertible, the first condition is cquivalent to
I'(a) - 17T

1 lowever, since ' is irreducibly dominant with positive entries ofl the diagonal, -1°7-7° > 0 [1 6]
(i.e., all of its entries are nonmegat ive). And since A > 0, 1 T\ > (). Supposc some constraint is
active, say ;0. 13y theargutnents inTheorem 2.2 it follows thata: 0, since ) 1 - i x> 0.
This is impossible. ']'hus, the constrained optimizat ion problem has only the single K I point at
I"(z)  O. Wenote that this argument works equally well for Fxample 2.3.

The situation for the variable conductor pr oblem is so1 newh at different with respect to the
implementation of numerical algorithms.  The Newton path following, algor ithm for nonvariable
conductors was based on the invertibility of 811(X, @) /0a: along the solution path. Theorem 2.4
does not establish this result, and in general it is possible for the path not to be monotonic in A.
1 lowever, severalpath following algorithins exist for this more generalsituation|[1 ,2,11 ,12,1 7).

'The noninvertibility of 911 (A, z)/0x, if it occurs, h a's a physical interpret ation. At A O
the cigenvalues of 311 (A, 2:)/0x in (2.717) Since the degree is a homotopic invarian, deg(H (A, @)
deg(11(0, 2)) for A [0, 1)1 ()]. 1f X ceases to be monotonic, and t he ¢urve folds backwards, the
number Of solulionis to 17 (X, 2): 0 is greater than one. 'Thus the determinant must chiange sign.
This implies that at least one cigenvalue passes through zero and becomes positive. Thisin 111111
implies that the solations along {his part of the curve arcunstable 111 thesense  hat the steady
st ate solution of the associated diflerential equat ion

I
f{; HO,  «(),  «(0)  xo wheve (A a0) 0,
dl

is not stable.
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